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Long- and short-time analysis of heartbeat sequences: Correlation with mortality risk
in congestive heart failure patients
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We analyzeRR heartbeat sequences with a dynamic model that satisfactorily reproduces both the long- and
the short-time statistical properties of heart beating. These properties are expressed quantitatively by means of
two significant parameters, the scalingd concerning the asymptotic effects of long-range correlation, and the
quantity 12p establishing the amount of uncorrelated fluctuations. We find a correlation between the position
in the phase space (d,p) of patients with congestive heart failure and their mortality risk.
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The main purpose of this Brief Report is twofold. The fir
goal is to afford a firmer theoretical basis to the method
analysis of heartbeating proposed in an earlier publica
@1#. The second goal is to substantiate with more convinc
arguments that this method yields an efficient criterion
estimate the mortality risk of congestive heart failure~CHF!
patients.

To prove this significant diagnostic property, we illustra
the relevant clinical data, missing in the earlier publicatio
and we limit ourselves to affording only this kind of ‘‘exper
mental’’ information. For other details, already adequat
illustrated in the earlier publication, we refer the interes
reader to Ref.@1#. For this study we considered 13 male CH
patients, from a study base of 320 subjects, who experien
cardiac death during a follow-up of 26 months~average 19
months, median 22 months!. Inclusion criteria were absenc
of pulmonary or neurological disease, absence of acute m
cardial infarction or cardiac surgery within the previous s
months, absence of any other disease limiting survival, st
therapy for at least two weeks, and good quality 24-h Ho
recordings, with an ectopy rate less than 5%. A compara
number of control subjects~16 patients!, matching for age,
sex, NYHA class~a functional and therapeutic classificatio
for prescription of physical activity for cardiac patients!, and
etiology, was then selected. These latter patients did not
perience cardiac death after follow-up. All patients had
24-h Holter recording at baseline, together with stand
functional evaluation including measurement of left ve
tricular ejection fraction, peak VO2 (O2 consumption during
effort!, and sodium~Na!. Finally, RR series for 10 healthy
subjects were taken from theNonlinear Time Series Analysi
~NOLTISALIS! archive@2#.

The signal that we plan to analyze is the sequence$Ti%,
illustrated by Fig. 2 of Ref.@1#. Actually, this signal is de-
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rived from the true experimental signal, the electrocard
gram~ECG!, by measuring the distance between two near
neighborR pulses. Thus a given valueTi of the sequence to
analyze is the time distance between thei th and the (i
11)th pulse. It is called anRRsequence. The sequence$Ti%
can be studied as a new time series, withi playing the role of
‘‘time.’’ Moreover, the valueTi , expressed as a function ofi
with i @1, can be thought of as a functionT(t), namely, as a
function of a continuous time variablet.

The second step of the method of Ref.@1#, as shown here
by Fig. 1, is based on dividing the plane (T,t) into horizontal
strips of sizes and on recording the lengths of the sojou
times ofT(t) in a strip. This resulted in a waiting time dis
tribution c(t) that did not agree with the scaling value o

FIG. 1. A sketch of the EM model. The dashed vertical lin
delimit the zones of constant slope, of lengthtem, one of which
~the one that contained the 200th beat! is explicitly indicated by the
double arrow. The horizontal stripes signaled by dotted lines del
the path that the trajectoryT(t) should follow to remain within the
same cell. The vertical arrows signal the times of transition fr
one to another cell, in the case of the laminar region between
and 800 beats.
©2003 The American Physical Society01-1
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served numerically by using the method of scaling detec
of Refs.@3,4#.

We now prove that the numerical results of Ref.@1# can
be accounted for very well by means of a model that we
the extended memory~EM! model. The real signalT(t) is
obtained by adding uncorrelated noise: this gives the imp
sion thatT(t) is totally erratic, while it is not. Let us describ
the EM model. First of all, we assume that for a given tim
tem, the curveT(t) retains a given slopea, then it abruptly
gets a new slopea8, for an interval of timetem8 , after which
a new abrupt transition to a new slopea9 takes place, for a
time tem9 , and so on. It is evident that the resultingT(t) has
the form of the zigzag curve illustrated in Fig. 1@5#. We shall
refer to the individual straight line intervals of this curve
laminar regions. Any laminar region is associated with it
own tem. We assign to the waiting time distributionc(tem)
the inverse power law form

c~tem!5~n21!
@^tem&~n22!#n21

@^tem&~n22!1tem#n
, ~1!

with 2,n,3, where^tem& is the average waiting time.
We have to discuss the EM model in the light of t

analysis that will be applied to a real signal, where the la
nar regions are not directly observable. To perform the an
sis we define a coarse-graining parameters and we obtain a
new series, namely,

Ni
(s)[@Ti /s#, ~2!

whereNi
(s) is the coarse-grained time series and@a# denotes

the integer part ofa. To help the reader to understand ho
the new sequence is created, we note that the prescriptio
Eq. ~2! is equivalent to dividing theRR axis into cells of
equal sizes. The sequenceTi is replaced by integer number
with the same value if the trajectoryT(t) remains in the
same cell. Next, to make our approach as fast and accura
possible, we adopt the walking prescription of Ref.@4# by
setting the rulej i51 whenNi

(s)ÞNi 21
(s) , and j i50 if Ni

(s)

5Ni 21
(s) . Finally, we generate several trajectories~labeled

with the indexl ) for the variablexl at ‘‘time’’ t, namely,

xl~ t !5(
i 5 l

l 1t

j i . ~3!

Note that, for simplicity, we have omitted indicating the d
pendence ons.

With the help of Fig. 1 we show that the coarse-graini
procedure results in significant correlation, or, equivalen
in many pseudoevents. The double arrow with the labeltem
indicates a typical laminar region of lengthtem. The vertical
arrows denote the locations of 1’s. For any laminar reg
with slopea, there are approximatelytemuau/s time inter-
vals of sojourn within a cell, of durationtk5s/uau. In other
words, the experimental observation yields a distribution
times tk . This is determined by the distribution of Eq.~1!
but it does not coincide with it. The larger eithertem or uau,
the larger is the number of correlated events. As earlier
ticipated, to simulate the real signal, we add to the zig
06290
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curve a totally random fluctuation. The numbers of sho
time intervals, and their lenghtstk as well, are significantly
modified by this additional random fluctuation.

Now, we want to explain why the adoption of the meth
of statistical analysis, used in Ref.@1# and applied again in
this Brief Report, reveals the existence of the real scaling
spite of the arbitrary coarse-graining method adopted. T
technique of analysis adopted is that originally proposed
Refs. @3,4#. It rests on using the trajectories of Eq.~3! to
create a diffusion process, and we determine numerically
probability distribution ofx at time t, denoted byp(x,t).
Then, we evaluate the Shannon entropy@6# of this diffusion
process. This is the reason why this method of analysi
called the diffusion entropy~DE! method. As shown in Ref
@4#, if the sequence$j i% is ergodic, with mean valuej̄, then
p(x,t) is expected to fit the scaling property

p~x2 j̄t,t !5
1

td
FS x2 j̄t

td D , ~4!

with the departure ofd from the usual value 0.5 measurin
the complexity of the process. It is straightforward to pro
that the Shannon entropy

S~ t !52E
2`

`

p~x,t !ln@p~x,t !#dx ~5!

of a process fitting the scaling condition of Eq.~4! yields

S~ t !5A1d ln~ t !, ~6!

whereA is a constant, whose explicit form is not relevant f
the ensuing discussion.

We now make the assumption that the timestem of Eq.
~1! are uncorrelated. We shall prove that this assumpt
yields

d5
1

n21
. ~7!

The DE analysis is made on sequences oftk values, which
ares dependent. However,n is a property of the hidden EM
model, thereby implying that Eq.~7! is independent of the
coarse-graining. Let us consider first the ideal case where
short-time randomness is present, and define the distribu
probability for the slopea, f (a). We make the simplifying
and plausible hypothesis that this distribution does not h
infinite moments. Note that this restriction does not apply
thet distribution, which has, in fact, slow tails and divergin
moments. During one single trend of acceleration or dec
eration the position of the walkerxl(t) is displaced by a
quantity

z5
uau
s

tem, ~8!
1-2
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which is the number of times the walker crosses the ‘‘b
boundaries’’ defined by the coarse-graining procedure
$Ti%. Consequently, we can write the probability of a d
placementz as

p~z!5E
0

`

dtemE
2`

`

dadS z2
uautem

s Dc~tem! f ~a!. ~9!

In the long-time limit @7# this process becomes indistin
guishable from a process where a walker, at regular t
distances of duration̂tem&, walks by a quantityDx;z, dis-
tributed as

P~Dx!5
s

uau^tem&
cS sDx

uau D . ~10!

Since the functionc has a long tail, this latter process, a
cording to the generalized central limit theorem@8#, results
in a Lévy flight, which is a stable process with divergin
central moments. The asymptotic scaling property of
walker xl(t) is determined by the first diverging fraction
moment of the distributionp(z),

^zg&5E
0

`

p~z!zgdz. ~11!

The smallest value ofg for which this integral diverges
called ĝ, defines the scalingd via d51/ĝ @8#. Substituting
Eq. ~9! into Eq. ~11!, we obtain

^zg&5E
0

`

dzE
0

`

dtemE
2`

`

dadS z2
atem

s Dc~tem! f ~a!zg.

~12!

Integrating overz, this result can be written as

^zg&5S E
0

`

c~tem!tem
g dtemDFs , ~13!

where

Fs5E
2`

`

daS uau
s D g

f ~a!. ~14!

This means that only the first factor might make^tem
g & diver-

gent, thereby implying thatĝ5n21 and proving Eq.~7!.
This also proves thatd does not depend either on the coars
graining parameter s or on the distribution ofa. This theo-
retical prediction is supported by the results of the numer
analysis, not shown here.

The value ofd does not depend on the strength of t
additive noise perturbing the EM model behavior, either.
fact, the sequence$texpt%, detected on the realRR se-
quences, can be modeled by

texpt~ t !5atem~ t !1bR~ t !, ~15!

with a!1 and b close to 1. The first contribution corre
sponds to the EM model, and the second termR(t) is gen-
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erated by the short-time zero-centered random fluctuatio
The EM model component yields superdiffusion, while t
random component generates ordinary diffusion. In
asymptotic limit of very large values oft, the superdiffusion
component, which is faster than the ordinary diffusion, b
comes predominant, and the DE method again detects
correct scalingd even in the case wherea!b. This means
that the prediction of Eq.~7! holds true even when the tra
jectory T(t), due to the action of a very strong noise, see
to deviate significantly from the behavior prescribed by t
EM model.

We use Eq.~15! to get for the correlation function
Cexpt(t) of the sequence$texpt% the expression@9–12#

Cexpt~ t !5pCem~ t !1~12p!Crandom~ t !, ~16!

where Cem(t) is the correlation function generated by th
zigzag signal andCrandom(t) is the correlation function gen
erated by the uncorrelated fluctuations. This means
Cem(t) is an inverse-power-law relaxation andCrandom(t) a
relaxation function decaying to zero in one time step. W
no loss of generality we assume^tem

2 &5^R2&5^texpt
2 &, im-

plying a21b251, and consequentlyp5a2 and (12p)
5b2. The parameterp can be evaluated by monitoring th
experimental correlation function at the first time step. A
cording to the fact thatCrandom(t) decays to zero in one step
while Cem(t) is much slower, we immediately obtainp
5Cexpt(1). The parameterp depends ons. This is so be-
cause the experimental evaluation oftexpt(t) is s dependent.
The parameterp defines the statistical weight of the EM
component present in the experimental signalT(t). How-
ever, its dependence ons makes its use questionable. Neve
theless, numerical work, not illustrated here, shows that
curvesp(s) have a bell-shaped form with a clearly define
maximum, which is referred to by us asp. This maximum is
a property independent ofs. In fact, we note that almost al
the healthy patients have their maximum at 30 ms, wh
most of the CHF patients have theirs at 20 ms: the param
p is a reliable measure of the intensity of the EM comp
nent. Consequently, we decided to represent the condition
all patients, healthy and CHF alike, in the (d,p) plane which
we call thephase plane. The criteria adopted to define th
phase plane make the resulting diagram independent of
coarse-graining parameters, and the location of any patien
in the plane is an objective property independent of
coarse graining parameters.

Figure 2 illustrates the distribution of patients in the pha
space. As found in Ref.@1#, the healthy patients occupy
broad region in the left top of the phase space, while
CHF patients are predominantly distributed along the dia
nal connecting the right top to the left bottom of the grap
with a small overlap with the healthy region. However, t
authors of Ref.@1# did not have the information necessary
prove that their approach makes it possible to estimate
mortality risk. To show this property, let us define the cen
of the healthy zone obtained the averaging the paramete
healthy patients. We denote this point with a white square
Fig. 2. Then, we rank the CHF patients according to th
distance from the white square. In other words, the first C
1-3
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patient is the one with minimum distance from the optim
condition. Then we observe the remaining patients, and
rank as second the one with minimum distance from
optimal condition, and so on. We find that the first sev
patients are alive. The eighth patient belongs to the grou

FIG. 2. Positions of healthy~circles! and CHF~diamonds! sub-
jects in the phase plane. The white diamonds correspond to pat
alive after the end of the experiment, and the black ones to pati
who were either dead or urgently transplanted. The white sq
~optimal condition, see text! represents the average position
healthy subjects in the plot.
f-
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patients who died, and from now on the patients are eit
alive or dead. This suggests that the closer the patient to
optimal condition the higher the survival probability. To su
port this important property in a more rigorous way, th
important property, we used the Mann-Whitney method@13#,
which proved that the probability for the distribution of dea
and alive patients of Fig. 2 to be fortuitous is less than 3

Moreover, it is important to remark that the survived p
tients corresponding to points in the phase plane far from
optimal conditions either had a serious pathology, being c
sified as NYHA class III~severe physical limitations, the
are comfortable only at rest! and therefore required a hea
transplant anyway, or had a very short follow-up time~less
than six months!. It is remarkable that the six live patient
who do not fit either of the earlier conditions occupy a regi
overlapping the zone of healthy subjects. The efficiency
this mortality risk criterion should be checked with a mu
larger number of patients. However, this Brief Report s
the statistical analysis behind it on a solid statistical grou
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